
 Twilio Messaging API Review
 Review Date: February 2nd, 2024
 Reviewer: Jon Harper

 This is a review of the Twilio Messaging API . This review intends to look at

 the surface area of the messaging API and provide a snapshot the teams

 producing APIs at Twilio can consider, but is something anyone else

 designing and delivering an API can also put to work as well.

 What is Done Well..

 The Twilio Messaging API is obviously robust, and possesses many of the

 common elements expected of a REST API, providing industrial-grade messaging

 solutions delivered as a modern API.

 OpenAPI
 Twilio’s providing an OpenAPI provides a machine-readable contract for the
 Message API, and usage of version 3.1.0 of OpenAPI reflects what the latest
 tooling will expect when importing the contract for integration.

 ✅ 3.1.0 Version of OpenAPI

 Info
 Twilio hits on all the notes when it comes to providing the meta data needed
 for an API, as defined using the info block of an API, providing everything
 you need to understand what is going on with an API.

 ✅ Info Title
 ✅ Info Description
 ✅ Contact Object
 ✅ Contact Name
 ✅ Contact URL
 ✅ Contact Email
 ✅ Terms of Service
 ✅ License Object
 ✅ Info Version
 ✅ Semantic Versioning

https://www.twilio.com/docs/messaging/api

 Paths
 Twilio does not have a trailing slash on their paths, and provides
 descriptions of what each path delivers, helping enrich documentation for
 the API.

 ✅ Path Trailing Slash
 ✅ Path Description

 Operations
 The operations for the Twilio Messaging API provide rich descriptions of
 what they do, as well as unique operation identifiers, and tags to help with
 discovery and organization–providing a rich set of programmatic operations.

 ✅ Operation Description
 ✅ Operation ID.
 ✅ Operation Tags

 Parameters
 The Twilio Messaging APIs has the fundamentals when it comes to query and
 path parameters, properly identifying them, defining which are required,
 while providing descriptions and schema type.

 ✅ Parameters In
 ✅ Parameter Description
 ✅ Parameter has a required property.
 ✅ Parameter Schema Type

 Request Bodies
 The Twilio messaging API employs an x-ww-form-urlo-encoded media type,
 leveraging body payloads for POST commands with descriptions, and schema
 supporting request payloads.

 ✅ Request Body POST
 ✅ Request Body Application X WWW Form URL Encoded
 ✅ Request Body Schema
 ✅ Request Body Schema Required
 ✅ Schema Description
 ✅ Request Body Schema Property Array Items
 ✅ Request Body Schema Property Array MaxItems

 Responses
 The design of responses for the Twilio Messaging API reflects what you
 expect from a simple modern web API utilizing consistent success status
 codes, with application/json media type, and well-defined schema for each
 response.

 ✅ GET 200 Status Code
 ✅ POST 201 Status Code
 ✅ JSON Media Type GET
 ✅ JSON Media Type POST
 ✅ Schema GET
 ✅ Schema POST

 Schema
 Twilio does a good job defining the shapes of its payloads, providing type,
 format, required, enum, and descriptions for schema, while also
 strengthening properties for validation with string and array min and max
 ranges, and even use of regex to further tighten things down.

 ✅ Schema Type
 ✅ Schema Required
 ✅ Schema Enum
 ✅ Schema Properties Format
 ✅ Schema Description
 ✅ Schema Property String Maxlength
 ✅ Schema Property String Pattern
 ✅ Schema Property Array Items
 ✅ Schema Property Array MaxItems

 What Can Use Improvement…

 While the Twilio Messaging API possesses some common API design patterns it is
 pretty complex, lacking standardization, and could use a number of structural
 refinements. The cognitive load for the API could be reduced for a version 2.0
 with a handful of standardizations that you see across Twilio, as well as with
 other providers.

 Paths
 The paths for the Twilio Messaging are not very conformant with simple
 RESTful design–paths should not be pascal case, versioning should be avoided
 in the path, and acronyms are not intuitive in API design.

 ⚠ Path Segments Pascal Case
 ⚠ Version In The Path
 ⚠ Acronyms In The Path

 Operations
 All of the operations for the Twilio Messaging API lack the summary and
 description to properly onboard consumers with the value each one delivers,
 and does not have any unique identifiers, making code generation and
 automated integration more difficult.

 ⚠ Operation Summary
 ⚠ Operation Description
 ⚠ Operation ID Camel Case

 Parameters
 The parameters for the Twilio Messaging API have most of the details you
 need to put them to work, but it wasn’t always clear which parameters are
 required when putting each operation to work in applications.

 ⚠ Parameters MUST have a required property.

 Request Bodies
 The request bodies for the Twilio Messaging API don’t always possess a
 request body, and there isn’t always a description to help understand what
 they contain, and the shape of the schema isn’t always fully defined.

 ⚠ Request Body POST
 ⚠ Schema Description
 ⚠ Request Body Schema Property Array MaxItems

 Responses
 The responses for the Twilio Messaging API aren't always consistent with
 each other, let alone other common approaches to returning data, and do not
 possess a standard set of error codes that consumers will expect when
 encountering problems.

 ⚠ GET 200 Status Code
 ⚠ POST 201 Status Code
 ⚠ 404 Status Code for DELETE Responses
 ⚠ 500 Status Code for GET Responses
 ⚠ 500 Status Code for POST Responses
 ⚠ 500 Status Code for DELETE Responses

 Schema
 All of the schema for the Twilio Messaging API can use a lot more details to
 help reduce friction for consumers, helping further flesh out the shape and
 other details so that requests and responses can be validated, but allow for
 code generation and other aspects of operations to be more effective.

 ⚠ Schema Description
 ⚠ Schema Required
 ⚠ Schema Properties Type
 ⚠ Require schema property string maxlength.
 ⚠ Schema Property Array MaxItems

 Conclusion
 Twilio Messaging API is clearly robust, but without the proper design rigor
 and other work, it has gotten very busy and somewhat inconsistent. It is
 clear from the operations that it is robust and in heavy rotation by
 applications, but it is rough, not smooth like most REST APIs.

 With a little more investment in the Twilio Messaging API it would be a
 first-class API. All the parts and pieces are there, they just need to be
 refined–smoothing out the rough edges and making sure it is consistent and
 standardized with what API consumers are expecting.

